The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet Traffic

Narseo Vallina-Rodriguez (IMDEA Networks) and Juan Tapiador (UC3M)

Jornadas REDIMadrid 2020 | 20 Oct 2020

Lots of data, lots of data crunchers

Anja Feldmann MPII

Oliver Gasser MPII

Franziska Lichtblau MPII

Enric Pujol BENOCS

Ingmar Poese BENOCS

Christoph Dietzel DE-CIX

Daniel Wagner DE-CIX

Matthias Wichtlhuber DE-CIX

Juan Tapiador Universidad Carlos III de Madrid

Narseo Vallina Rodriguez IMDEA Networks, ICSI

Oliver Hohlfeld Brandenburg University of Technology

Georgios Smaragdakis TU Berlin, MPII

euronews.

Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement

euronews.

Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement

The New York Times Working From Home: How Coronavirus Could Affect the Workplace

euronews.

Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement

The New York Times Working From Home: How Coronavirus Could Affect the Workplace

Will Shift to Remote Teaching Be Boon or Bane for Online Learning?

euronews.

Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement

The New York Times Working From Home: How Coronavirus Could Affect the Workplace

Will Shift to Remote Teaching Be Boon or Bane for Online Learning?

Under lockdown, Italy's social and family life goes virtual

euronews.

Coronavirus: Half of humanity now on lockdown as 90 countries call for confinement

The New York Times Working From Home: How Coronavirus Could Affect the Workplace

Will Shift to Remote Teaching Be Boon or Bane for Online Learning?

RE		

Under lockdown, Italy's social and family life goes virtual

The Internet is essential in all these efforts, but how well does it cope?

• Understand the impact of the COVID-19 pandemic on different networks

- Understand the impact of the COVID-19 pandemic on different networks
- Present our results from a diverse set of vantage points

- Understand the impact of the COVID-19 pandemic on different networks
- Present our results from a diverse set of vantage points
- Highlight how a change in user demand affects traffic dynamics

Vantage points

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

Interconnecting networks

- Central Europe: 900+ members, 8+ Tbps peak traffic
- Southern Europe: 170+ members, 500+ Gbps peak traffic
- US East Coast: 250+ members, 600+ Gbps peak traffic
- IPFIX flows collected at the public peering platforms

Data has been analyzed strictly on premise and results are aggregated.

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

Interconnecting networks

ISP Central Europe

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

Interconnecting networks

- $\bullet~Services$ ${\sim}15M$ fixed line subscribers + Tier 1 transit network
- No hosted CDN caches, but a diverse peering infrastructure
- Subscriber view: Netflow captured at the Border Network Gateways (BNGs)
- AS level view: Netflow collected at the border routers

Data has been analyzed strictly on premise and results are aggregated.

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

Interconnecting networks

ISP Central Europe Residential customers working from home

3 IXPs

IXP Central Europe IXP Southern Europe IXP US East Coast

Interconnecting networks

Service network interconnecting universities and research institutions

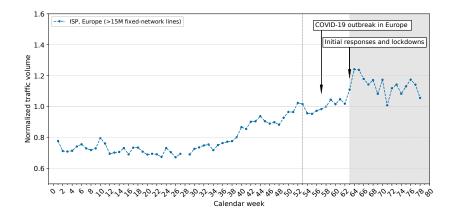
ISP Central Europe Residential customers working from home

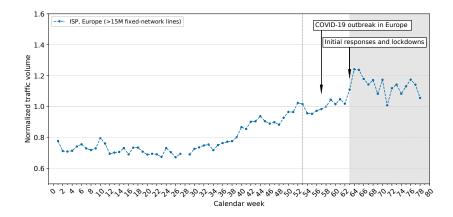
- Academic network interconnecting 16 universities and research centers (Madrid region)
- Serves \sim 290K users (including WiFi access, student halls, etc)
- NetFlow captured at the border routers

The network operators provided anonymized flow data.

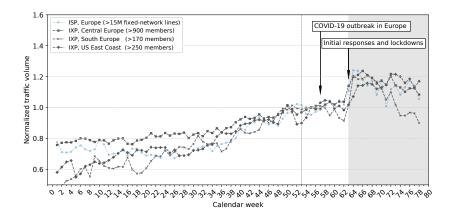
base: February before the lockdown

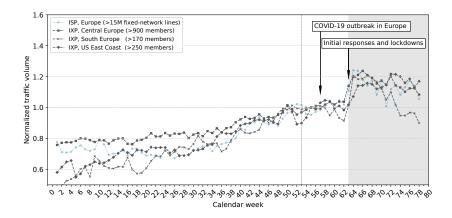
base: February before the lockdown **March**: During the lockdown

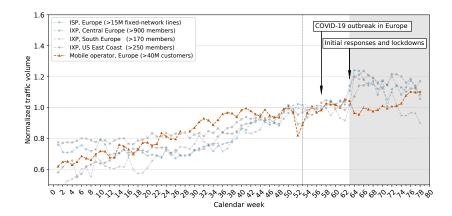

base: February before the lockdownMarch: During the lockdownApril: First relaxation of restrictions

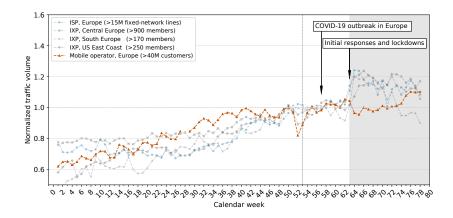

base: February before the lockdownMarch: During the lockdownApril: First relaxation of restrictionsJune: Minimum restiction level

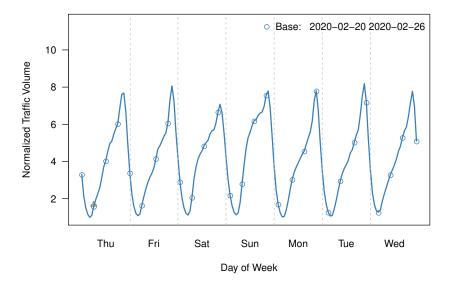
base: February before the lockdownMarch: During the lockdownApril: First relaxation of restrictionsJune: Minimum restiction level

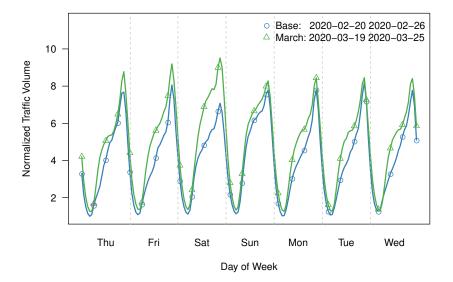

	ISP-CE	IXP-CE	IXP-SE	IXP-US	EDU
base	Feb 20–26				
March	Mar 19–25	Mar 19–25	Mar 12–18	Mar 19–25	Mar 12–18
April	Apr 09–15	Apr 23–29	Apr 23–29	Apr 23–29	Apr 23–29
June	Jun 18–24	Jun 18–24	Jun 18–24	Jun 18–24	n/a

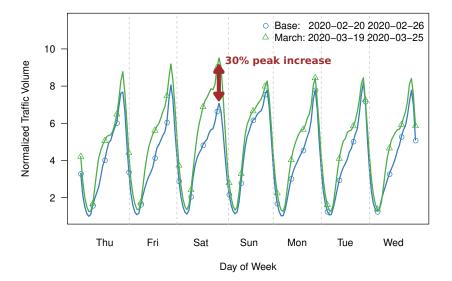

Traffic changes in different networks

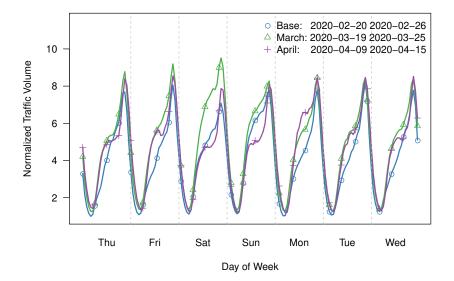


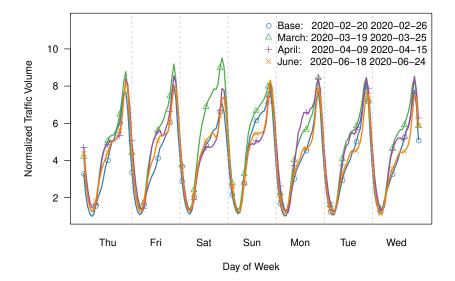

Once the lockdown started the ISP saw an increase in traffic which normally spans over multiple months.

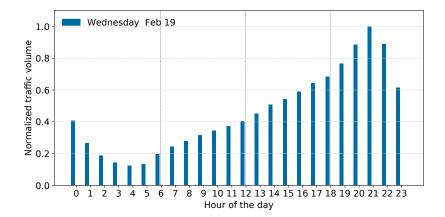

Similar behaviour for the IXPs; for the IXP CE and IXP US the traffic levels keep elevated.

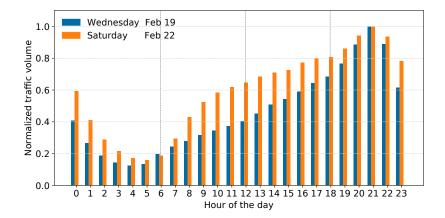


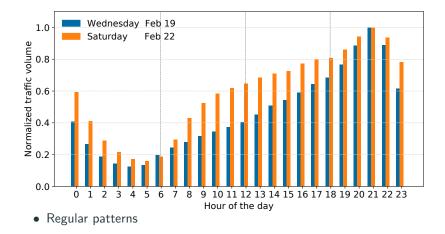


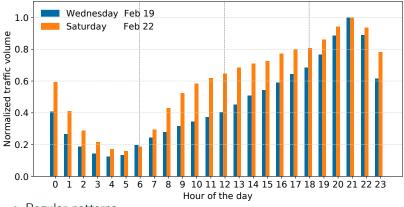

Once the lockdown started mobile traffic decreased measurably and increases with the first relaxations in mid April.

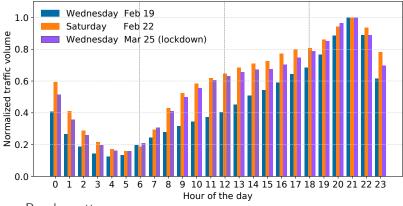

Traffic volumes before and after the lockdown

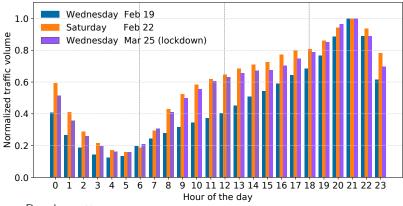




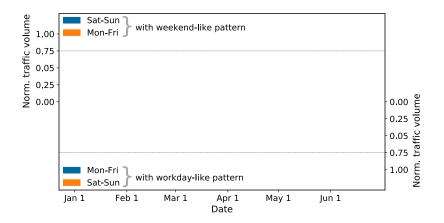


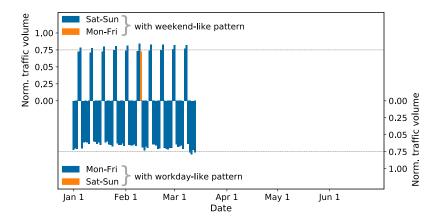


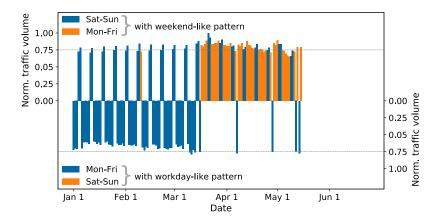


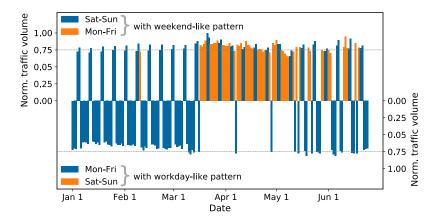


• Regular patterns


- Workday: Strong increase in evening hours
- Weekend: More traffic during daytime

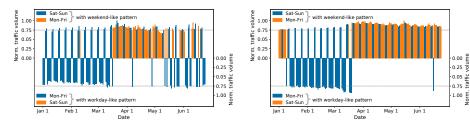

- Regular patterns
 - Workday: Strong increase in evening hours
 - Weekend: More traffic during daytime


- Regular patterns
 - Workday: Strong increase in evening hours
 - Weekend: More traffic during daytime
- During pandemic: Workdays look more like weekends

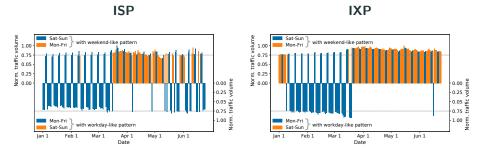

• Classify days into workdays or weekends using traffic patterns

- Classify days into workdays or weekends using traffic patterns
- Pre-lockdown: Most days are classified correctly

- Classify days into workdays or weekends using traffic patterns
- Pre-lockdown: Most days are classified correctly
- During lockdown: Many workdays are classified as weekends



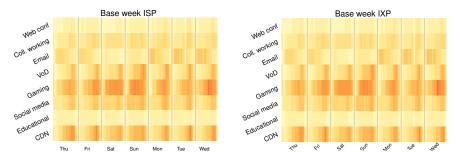
- Classify days into workdays or weekends using traffic patterns
- Pre-lockdown: Most days are classified correctly
- During lockdown: Many workdays are classified as weekends; recovering after mid-May


Changes in workday vs. weekday patterns: ISP vs. IXP

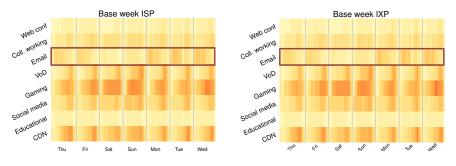
ISP

IXP

Changes in workday vs. weekday patterns: ISP vs. IXP

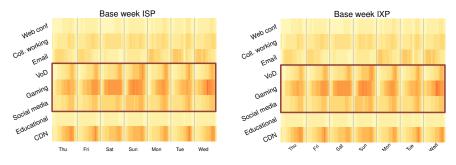

Workdays are also mostly classified as weekends at the IXP

• Classification: transport ports and AS based

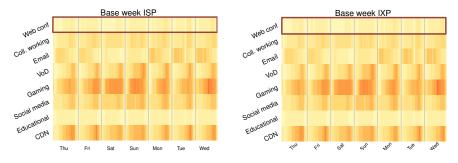

- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks

- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks
- No change in early morning hours \rightarrow remove

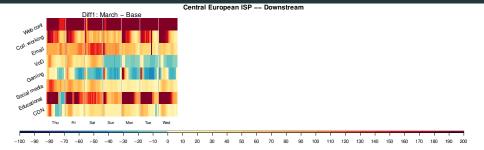
- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks
- No change in early morning hours \rightarrow remove

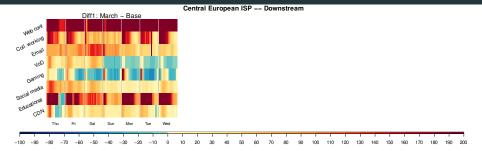


- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks
- No change in early morning hours \rightarrow remove

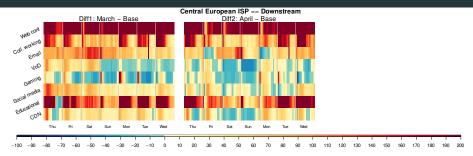

• Email during working hours

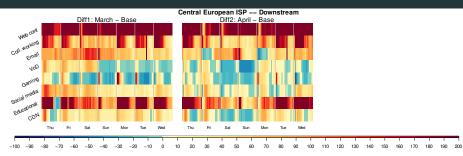
- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks
- No change in early morning hours \rightarrow remove




- Email during working hours
- CDN, VoD, gaming and social media during evening hours

- Classification: transport ports and AS based
- Normalize traffic to min/max of three weeks
- No change in early morning hours \rightarrow remove

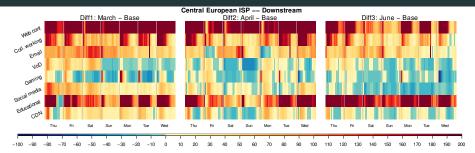

- Email during working hours
- CDN, VoD, gaming and social media during evening hours
- Hardly any web conferencing


March:

- Large increase in web conf., coll. working, educational traffic
- Partial decrease in VoD and gaming

March:

- Large increase in web conf., coll. working, educational traffic
- Partial decrease in VoD and gaming

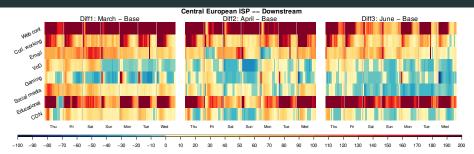


March:

- Large increase in web conf., coll. working, educational traffic
- Partial decrease in VoD and gaming

April:

- Growth in Email less pronounced
- Decrease in social media



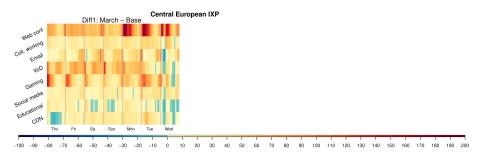
March:

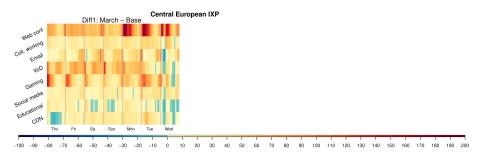
- Large increase in web conf., coll. working, educational traffic
- Partial decrease in VoD and gaming

April:

- Growth in Email less pronounced
- Decrease in social media

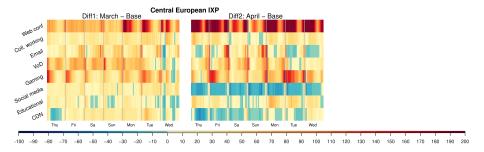
March:

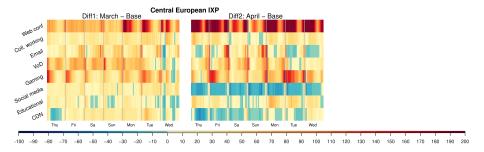

- Large increase in web conf., coll. working, educational traffic
- Partial decrease in VoD and gaming


April:

- Growth in Email less pronounced
- Decrease in social media

June:

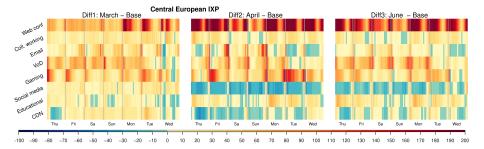

- Web conf. still growing, but more focused on working hours
- Moderate growth in coll. working
- Decrease of VoD, gaming and social media 17


March:

- Increase in web conf., VoD, and gaming
- Partial decrease in CDN and educational traffic

March:

- Increase in web conf., VoD, and gaming
- Partial decrease in CDN and educational traffic

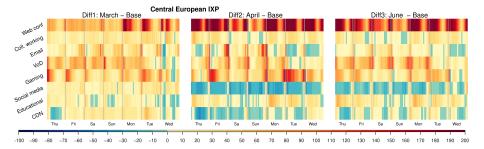


March:

- Increase in web conf., VoD, and gaming
- Partial decrease in CDN and educational traffic

April & June:

- Strong increase in web conf.
- Decrease in CDN and social media traffic

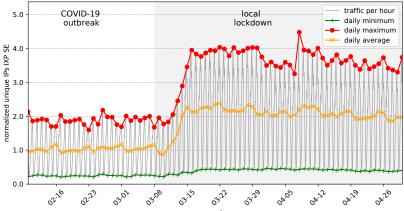


March:

- Increase in web conf., VoD, and gaming
- Partial decrease in CDN and educational traffic

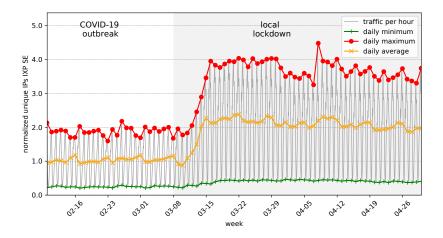
April & June:

- Strong increase in web conf.
- Decrease in CDN and social media traffic


March:

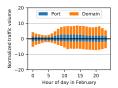
- Increase in web conf., VoD, and gaming
- Partial decrease in CDN and educational traffic

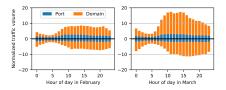
April & June:


- Strong increase in web conf.
- Decrease in CDN and social media traffic

Case Study: Gaming traffic at a Southern European IXP

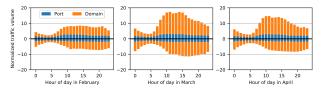
week


Case Study: Gaming traffic at a Southern European IXP

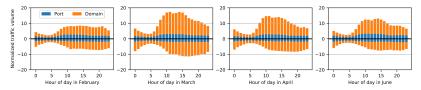

Gaming: Large increase in number of active IP addresses and traffic volume

- Port-based: Well known port/proto combinations exclusively used by VPN services
- DNS-based: For TCP/443 traffic, IPs labeled *vpn*, but not www.

- Port-based: Well known port/proto combinations exclusively used by VPN services
- DNS-based: For TCP/443 traffic, IPs labeled *vpn*, but not www.

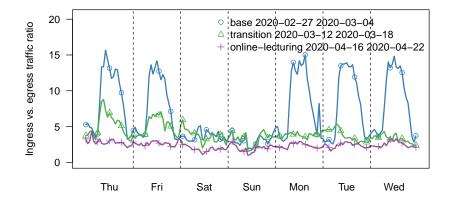


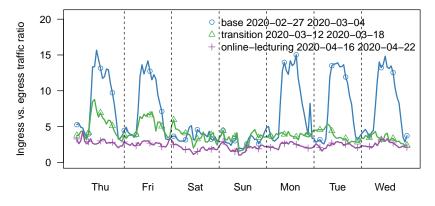
- Port-based: Well known port/proto combinations exclusively used by VPN services
- DNS-based: For TCP/443 traffic, IPs labeled *vpn*, but not www.


200% increase in domain-based VPN traffic in March during working hours

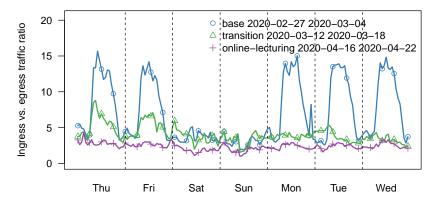
- Port-based: Well known port/proto combinations exclusively used by VPN services
- DNS-based: For TCP/443 traffic, IPs labeled *vpn*, but not www.

- 200% increase in domain-based VPN traffic in March during working hours
- Slight decrease in April

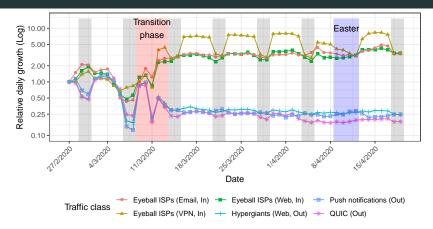

- Port-based: Well known port/proto combinations exclusively used by VPN services
- DNS-based: For TCP/443 traffic, IPs labeled *vpn*, but not www.



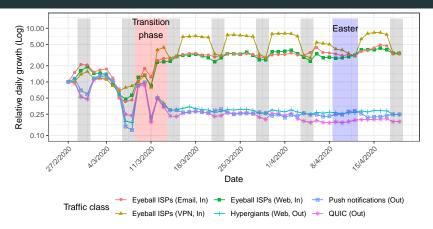
- 200% increase in domain-based VPN traffic in March during working hours
- Slight decrease in April & June


How did edu traffic change?

Ingress-egress traffic ratio: REDIMadrid

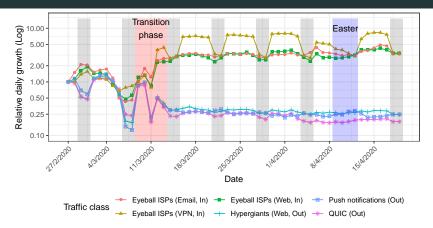


• Large decrease in traffic and number of connections



- Large decrease in traffic and number of connections
- Traffic ratio significantly decreased from 15:1 to 4:1

Protocol changes: REDIMadrid



Protocol changes: REDIMadrid

• Large increase in incoming web (1.7x), email (1.8x), VPN (4.8x), remote desktop (5.9x), and SSH (9.1x) traffic.

Protocol changes: REDIMadrid

- Large increase in incoming web (1.7x), email (1.8x), VPN (4.8x), remote desktop (5.9x), and SSH (9.1x) traffic.
- Large decrease in outgoing web traffic (50%) and mobile traffic (65% of push notifications' traffic)

What we found

• Changes in people's lives lead to new traffic patterns

- Changes in people's lives lead to new traffic patterns
- Difference between workday and weekend vanishes

- Changes in people's lives lead to new traffic patterns
- Difference between workday and weekend vanishes
- Applications for remote work, education, VPN, and video conferencing see significant increase in traffic

- Changes in people's lives lead to new traffic patterns
- Difference between workday and weekend vanishes
- Applications for remote work, education, VPN, and video conferencing see significant increase in traffic
- Absence of users can lead to decrease in traffic for certain applications

- Changes in people's lives lead to new traffic patterns
- Difference between workday and weekend vanishes
- Applications for remote work, education, VPN, and video conferencing see significant increase in traffic
- Absence of users can lead to decrease in traffic for certain applications
- Many of the relevant applications are not served by hypergiants \rightarrow sole focus on hypergiants is not sufficient

- Changes in people's lives lead to new traffic patterns
- Difference between workday and weekend vanishes
- Applications for remote work, education, VPN, and video conferencing see significant increase in traffic
- Absence of users can lead to decrease in traffic for certain applications
- Many of the relevant applications are not served by hypergiants \rightarrow sole focus on hypergiants is not sufficient

Our vantage points reveal that the impact of the COVID-19 panedmic is directly reflected in changes to Internet traffic patterns.

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year
- Impact on peak traffic is limited, but valleys get filled

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year
- Impact on peak traffic is limited, but valleys get filled
- The Central European IXP reports capacity increases of around 1,500 Gbps

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year
- Impact on peak traffic is limited, but valleys get filled
- The Central European IXP reports capacity increases of around 1,500 Gbps
- Networks could react quickly to the additional need for capacity

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year
- Impact on peak traffic is limited, but valleys get filled
- The Central European IXP reports capacity increases of around 1,500 Gbps
- Networks could react quickly to the additional need for capacity

Well-provisioned networks can accomodate sudden changes in demand if they're planned with spare capacity and quick reaction times.

- Traffic increase of 15-30% within a few days
- Networks usually provision for $\approx 30\%$ increase per year
- Impact on peak traffic is limited, but valleys get filled
- The Central European IXP reports capacity increases of around 1,500 Gbps
- Networks could react quickly to the additional need for capacity

Well-provisioned networks can accomodate sudden changes in demand if they're planned with spare capacity and quick reaction times.

Contact emails: Paper link: narseo.vallina@imdea.org