

re

madrid

K 34

investigación

## Quantum Cryptography and **European Testbeds** XIV jornadas REDIMadrid

#### **Universidad Rey Juan Carlos** Madrid, 22 Octubre 2019

Vicente Martin, Vicente@fi.upm.es



Center for Computational



Universidad Rey Juan Carlos







## CCS Construction Cryptography and New Generation Networks



Index.

- Why Quantum Cryptography? Do we have a problem?
- Brief Intro to Quantum Key Distribution
- QKD and networks.
- Software Defined Networking and the Madrid Quantum Network
- OpenQKD: European QKD Testbeds
- Future









Quantum Computing and Quantum Crypto: Do we have a problem?



- Quantum computers break, in polynomial time, the most used algorithms for public key cryptography and key distribution.
  - RSA
  - Elliptic curve cryptography
  - Diffie-Hellman
- But, you know, building a quantum computer will take forever...
  - Or, at least, so many years that you do not need to worry...





From : Quantum Computing: Progress & Prospects 2018. A Consensus Report. National Academy of Sciences, Engineering and Medicine (adapted from M. Mosca, 2015)



Universidad Rey Juan Carlos





КM





- **Z:** Time to a quantum computer: ?
- Y: Time to fully change the security infrastructure: Estimate (NIST) 20yrs.
- **X**: Shelf life: 1-50 yrs. (what is your application?)

### If X+Y > Z... you have problems.

















### Postquantum crypto: Business as usual.

 "new" algorithms believed to be secure against Quantum Computers.

### Quantum Cryptography:

- Physical layer security -> Networks
  - You need hardware
  - ... and it is not easy
- Not a complete substitute! (symmetric crypto)













## Información Cuántica. El Qubit.



### Definamos dos estados cuánticos como 0 y 1: |0> y |1>

- |0> significa "el estado cuántico que representa al valor 0 del qubit"... Sea cual sea su implementación física: la polarización de un fotón, estados de espín...
- Un estado genérico de un **qubit** se escribe:  $|\phi\rangle = \alpha |0\rangle + \beta |1\rangle$ • Lectura (medida):

$$\alpha|0> + \beta|1> \xrightarrow{\text{medida}} |0> \text{ Prob. } \alpha^2$$

$$|1> \text{ Prob. } \beta^2$$

- $(\alpha^2 + \beta^2 = 1)$
- Nótese que la lectura modifica el estado del qubit.
- Teorema de la No-clonación: No se puede copiar un estado cuántico desconocido.





Quantum Criptography

Iuan Carlos



### Ingredientes:

- Un emisor de qubits (típicamente fotones) individuales (Alice)
- **Receptores** de qubits individuales (Bob)
- Un canal cuántico (capaz de transmitir los qubits de Alice a Bob)
- Un canal clásico (público pero autenticado)

INTERNATIONAL

EXCELLENCE

• ... y un espía (Eve)





## Quantum Criptography... en redes



















1549 nm [ DOI: 10.1063/1.1842862]

### What to do? Madrid UPM-TID QKD Networks: Access + Core metro networks





(2009)

Estudiar la integración de QKD en redes de comunicaciones en coexistencia con señales clásicas y con equipos convencionales

17

# What to do? Extreme "ad hoc" network

EXCELLENCE



• Quantum metropolitan optical network based on wavelength division multiplexing, Optics Express 22, 1576-1593, 2014 (arXiv:1309.3923)

Entanglement Distribution in Optical Network, IEEE . Topics in Quantum Fleetronics

### A network just for quantum.

POLITÉCNICA

fundación**hr** 

- Including "all channels": Quantum, service and distillation.
- No trusted nodes (metro area)
- Addressable: The emitter can decide whom to talk to by chosing the wavelength.
  - As **many users** as possible (dem. 64)

Use as much deployed infrastructure and commercial

equipment as possible.

Rev Juan Carlos

### What to do? Madrid Quantum Network: First SDN-QKD network in the world

### Use the correct technology

- SDN Software Defined Networking
  - Network Flexibility
- CV-QKD technology:
  - Better tolerance to noise: quantum/classical copropagation.
  - Prospective industrialization path



### Key structure: SD-QKD-Node Abstraction



## Key structure: SD-QKD-Node Abstraction





## Madrid SDN QKD Network

- These ideas have been implemented connecting three production sites of Telefónica Spain in Downtown Madrid.
- SDN controller: Manages the network. Quantum systems in A can be connected with B or C according to the controller's policies.
- CV systems (telco-friendly)
- The connection with the rest is completely standard.

The connection to the network is through standard Communications systems. (Huawei OSN 1800)



CV QKD Systems: Huawei Technologies Dusseldorf

### Quantum - Classical coexistence

- Currently up to 17 copropagating classical channels with the quantum channel.
  - Classical channels in the same band (C-band ITU grid)
- Limited only because of the number of free ports in the OSN.
- 100 Gbps x 17 = 1.7 Tbps classical.
- Quantum 20-70 kbps max. (dependent on the link and key distillation)





Universidad Rey Juan Carlos







### 3. Madrid SDN QKD Network



First Quantum SDN Network in the world.

Installed in Telefónica Spain **production facilities**.

"The Engineering of a SDN Quantum Key Distribution Network" IEEE Comms. Mag. July 2019, Special number "The Future of Internet" doi: 10.1109/MCOM.2019.1800763; http://arxiv.org/abs/1907.00174

## 3. Madrid SDN QKD Network



First Quantum N Network in the d.

> alled in Telefónica in **production** ilities.

- 3.9Km (fiber 8.5 dB
- Integration in real world networks.

**Relevance:** 

- Logical & physical level.
- Deployment.
- Scalability.
- Relevant industrial cases.

"The Engineering of a SDN Quantum Key Distribution Network" IEEE Comms. Wag. July 2010, Special Administration of Internet" doi: 10.1109/MCOM.2019.1800763 ; http://arxiv.org/abs/1907.00174



### Evolution: European Testbeds. The OpenQKD project



- European Open QKD Network
- Testbeds to demonstrate the feasibility and maturity of Quantum Communications technologies.













## **QKD enabled ICT security**



#### **Quantum Key Distribution**

- a technology offering security in the quantum age
- so far only isolated demos on technological level
- slow take up and low visibility due to lack of understanding and risk-aversion

#### Need an integrated approach to

- ✓ Raise awareness of QKD in security applications
- Demonstrate seamless integration into current networks and security architectures
- Show the benefit of QKD for a wide range of real world usecases
- ✓ Involve whole supply chain from manufacturers to end-users
- Set standards for large scale deployment opportunities

### Realised in OPENQKD



### **OPENQKD** eco system

THALES

dea





**Fiber infrastructure operators** 

SIG

UNIVERSITY OF CAMBRIDGE

citycom we connect the world

**Telecom operators** 





Aerospace and satellite industry



Standardisation institutes







**VSB** TECHNICAL UNIVERSITY







### **Objectives: Use cases**



Operation of use-cases deriving from Secure Societies needs

- Demonstration of more than 30 use-cases for QKD featur
  - realistic operating environments
  - end-user applications and support

Range of use-cases:

4

Secure and digital societies



- Inter/Intra datacenter comm., e-Government, High-Performance computing, financial services, authentication and space applications, integration with postquantum cryptography
- □ Healthcare
  - Secure cloud storage services and securing patient data in transit
- Critical infrastructure
  - QKD for telecom networks, 5G infrastructure and securing smart grids

## **Objectives: Competitive EU industry**



#### Kick-start a competitive European QKD industry

- □ Industry standard QKD devices (high maturity); 23 devices operational in OPENQKD
- Next generation QKD systems based on new protocols and novel implementations:
  - Long distance QKD
  - MDI QKD
  - Twin Field QKD
  - Low cost CV–QKD
  - Hand-held QKD
  - Access QKD



- Adaptation of network encryption devices for QKD operation; 30 encryptors in OPENQKD
- □ End-user workshops to raise awareness of security industry
- □ Staff training to foster know-how on QKD deployment and operation at test sites



### Evolution: European Testbeds. The OpenQKD project



- Open calls scheme to bring-in externally defined use cases.
   (1M€)
  - Continuous call (evaluated 4 times during the lifetime of the Project)









### Objectives: Pan-European Quantum Network



Lay the foundations for a Pan-European Quantum Network

- □ 4 large testbed sites and 12 demonstrator sites in 12 European countries
- □ Long distance cross-border links
- □ Testbed for free space QKD

6

- Test GEANT fiber infrastructure for a future large so quantum communication network
- Study of satellite QKD and development of interfaces to terrestrial QKD networks





### **16 OPENQKD test sites**







- Evolution of the Madrid Quantum Network.
- Partners: RedIMadrid, UPM, Telefónica.
- 8 predefined use cases.
- Key use cases: SDN based (but also traditional)

INTERNATIONAL CAMPUS OF

EXCELLENCE

- Start: 2-4 links installed in November.
- Up to 9 links for the largest demonstrations.
- Distances 3-50 Km



### **Testbed Vienna I**

### **Inner City link**

#### Vienna

Test bed partners: AIT, OEAW, FRX

Node locations: 8 (AIT, 2 IXPs, 5 Federal Ministries)

QKD Links: 7 AIT-IXP2-IXP1, IXP1-end users (star)

Link encryptors: 2 layer-1, 5 layer-2

Distances: 3-10km;

**SDQN:** optical switching of QKD terminals at IXP1

Coexistence: 2 dark fibers, 5 lit fibers

**Use case demos**: Secure distribution and cloud storage of government data

Start: Month 12

Duration: 12 months (incl. cross border)





## **Testbed Vienna II**



### **Cross-Border link**

Vienna – Bratislava

Test bed partners: AIT, OEAW

**Links: Distance 70 km;** 1-2 links (dark fiber) from Vienna (IXP1) to Bratislava, 1 inner city link in Bratislava to Austrian diplomatic mission

Start: Month 18

#### Duration: 4 months



# TRI-STAR link (extension to OPENQKD)

Vienna – Bratislava – Graz

Test bed partners: AIT, OEAW, CYC, ASFINAG (ex)

Case study for QCI network structures

**Links:** 2-3 links for Vienna-Graz, 2 extra links to connect inner city locations to fibers along motorway

Start: Month 24

Duration: 4 month



#### Future: European Quantum Computational Communication Infrastructure



Ten years plan to "make available a quantum communication infrastructure in Europe, to boost European capabilities in quantum technologies, cybersecurity and industrial competitiveness.

- Agreement recently signed by 9 member states (Sept. 2019)
- OpenQKD Project is considered the ramp-up phase of the QCI

















A. Aguado<sup>1</sup>, P. Salas<sup>1</sup>, A.L. Sanz<sup>1</sup>, J.P. Brito<sup>1</sup>, R. Brito<sup>1</sup>, R. Vicente<sup>1</sup>, D. R. Lopez<sup>2</sup>, V. Lopez<sup>2</sup>, A. Pastor<sup>2</sup>, V. Martin<sup>1</sup>







EU H2020 Grant 820466 EU H2020 Grant 857156



Comunidad de Madrid S2018/TCS-4342

CvQuCo - MINECO/FEDER TEC2015-70406-R Thanks!...

### Questions/comments?

Vicente@fi.upm.es

U. Politécnica de Madrid

<sup>1</sup>Center for Computational Simulation and ETSI Informáticos, Universidad Politécnica de Madrid 28660 Madrid, Spain <sup>2</sup>Telefónica Investigacion y Desarrollo, Ronda de la Comunicacion s/n 28050 Madrid. Spain



Universidad Rey Juan Carlos



Vicente Martin

gcc.fi.upm.es



