
Integrating Quantum	Cryptosystems in	
Next Generation Networks

Alejandro	Aguado,	Vicente	Martin	



Outline

• Introduction
• Software-Defined	Networking
• Network	Functions	Virtualization
• Quantum	Key	Distribution

• Enabling	End-to-End	Services	with	Quantum	Encryption
• Securing	Control	Plane	Communications
• Conclusions



Introduction

• Software-Defined	Networking	is	a	novel	network	paradigm	that	
allows	to	decouple	the	forwarding	(data)	and	management	(control)	
planes	of	a	network,	traditionally	encapsulated	on	each	network	
device.
• This	network	paradigm	is	based	on	the	concepts	of	abstraction	and	
network	programmability.
• All	these	techniques	allow	to	centrally	manage	an	entire	network,	
deploying	and	optimizing	end-to-end	services	using	standard	
protocols,	such	as	OpenFlow and	NETCONF.



Introduction:
Example	of	SDN	controller	view	of	a	domain



Introduction

• Network	virtualization	allows	to	simulate	network	resources	that	do	
not	physically	exist	as	hardware	appliances.	
• Virtualization	in	a	network	environment	can	happen	in	different	ways
• Creating	virtual	links	or	tunnels	across	multiple	devices	that	are	given	to	the	
user	as	a	single	link	(VNTM).
• Abstracting	several	network	resources	as	a	single	entity	to	be	controlled	by	
end	users	(FlowVisor/OpenVirteX/Strauss	arch.).
• Encapsulating	network	functionalities	inside	software	images	/	virtual	
machines	(NFV).



Examples	of	NFV	MANO	projects



Introduction:
Quantum	Key	Distribution

• QKD technology	can	be	regarded	as	two	
sources	of	synchronized	random	numbers
that	are	separated	physically.

• QKD	does	not	depend	on	computational	
assumptions (i.e.	it	will	be	safe	however	the	
computational	power	of	the	attacker).	It	
provides	backward	and	forward	security.

• It	can	be	mathematically	proven	to	be	
secure	(in	principle,	an	information	
theoretic	secure	(ITS)	primitive)

• A	correct	implementation	will	deliver	keys	of	
the	highest	security

• QKD	has	some	limitations	that	do	not	affect	
the	conventional	cryptosystems,	usually	
based	on	computational	complexity.

• Any	kind	of	amplifiers	or	active	components
that	can	modify	the	state	of	the	quantum	
signals	must	be	bypassed.

• This	sets	a	limit	to	the	maximum	distance	(or	
absorptions)	that	a	QKD	protocol	can	tolerate,	
well	suited	to	be	used	within	a	metropolitan	
area	or	with	links	of	up	to	150	km

LIMITATIONS

Alice BobEve

Quantum	channel

Classical	channel



Introduction:	Quantum	Key	Distribution

BobAlice

Encrypt Decrypt

Key	
exchange

Message	
Exchange

Message	
encryption Eve

QKD	
System

QKD	
System

Public	Authenticated	Channel

Quantum	Channel

Ingredients:
• Qubit	transmitter	(typically	

photons),	Alice.
• Single	qubit	receivers,	Bob.
• Quantum	channel	(capable	of	

transmitting	qubits	from	Alice	to	
Bob,	in	our	case	fibre).

• Classical	channel	(public,	but	
authenticated).

Data	Channel



A	mutually-beneficial	relation

QKD
Software
Networks

• Alleviates	current	and	new	(SDN+NFV)	security	threats
• Brings	a physical	security	layer	composable with	traditional	schemes

• Allows	to	easily	integrate	and	manage	QKD	systems,	reducing	costs
• Allows	to	use	the	trusted	node	model	without	additional	assumptions.

The	integration	of	QKD	technologies	in	novel	network	paradigms	must	be	seen	as	a	
mutually	beneficial	agreement,	as	both	worlds	can	easily	improve	by	being	combined.

Site	A Site	B

NFV	MANO	/	SDN

Quantum-safe
Ecosystem

Control
Plane

Data	Plane



Introduction

• Network	services	are	increasingly	requesting	more	flexibility	and	
network	resources.
• One	of	the	biggest	demands	is	to	increase	the	level	of	security for	the	
transmission	between	remote	premises.
• Here	we	show	an	example	of	a	node	architecture and	the	protocol	
requirements	in	a	GMPLS	environment	to	provide	QKD-enhanced	
security	in	end-to-end	services.



QKD	Box

ETSI	
Proxy

GMPLS	
Agent

Key	Req/Resp

Quantum	Link

Cl
as
sic

al
	

ch
an
ne

ls

Encryptor

Switch

Proprietary
protocols

Flow	control
Key	injection

PCE

Extended
PCEP Desired	capabilities:

• Access	to	QKD-generated	keys.
• Encryption	in	upstream	services	(Data	

encryptor,	security	module,	etc.).
• Switching/Routing.
• Control	plane	interface	enabling	automation

Example	of	QKD-enabled	network	node	
architecture



Definition	of	requirements	in	terms	of	parameters

• Parameters	required	to	be	exchanged	(point-to-point	encryption):
• Session	ID	(key_handle):	Initially	set	as	0,	session	ID	gets	the	value	of	the	first	Key	
handle	extracted	by	the	source	agent	in	the	initial	setup.	The	source	agent	will	be	in	
charge	of	updates	(future	work).

• Key	length:	Length	of	the	key	to	be	used	for	the	encryption.
• Destination:	It	defines	the	other	peer	(encryptor/decryptor)	to	synchronise	with.	
Currently	defined	by	an	IP	address.

• Encryption	Layer:	Layer	where	encryption	is	performed.
• Refresh	type	and	value:	Type	of	refresh	to	be	done	for	a	key	(time/traffic/etc)	and	
the	value	to	be	considered	as	a	threshold.

• Algorithm:	Encryption	algorithm	to	be	used.



Secure	channel	creation

Exchange	Secure	Keys	/	Quantum	Channel
QKD	Box	
ETSI	Proxy

Lightpath creation	/	Control	Plane

Include	Keys	in	the	encryption	card

Exchange	information	/	Data	Plane

GMPLS	
Agent

GMPLS	
Agent

GMPLS	
Agent

GMPLS	
Agent

Encryptor
Encryptor

OXC OXC

PCE

…

Alice Bob

Eve

Key	
exchange

Channel	
Creation

Message	
Exchange

Message	
encryption

QKD	Box	
ETSI	Proxy



GMPLS+PCE	Architecture
Proposed	workflow:	Case	“Node	starts”

Node1
QKD

PCE

Node5
QKD

GMPLS	case:
- PCRequest including	metric	for	inline	

encryption.
- PCReply including	new	ERO	subobjects for	

key	management
- RSVP	including	the	same	ERO
- RSVP	QE	ERO	subobject detected	by	node	1.	

Key_handle unset	(=0),	it	gets	a	new	key	and	
key_handle,	and	adds	the	key_handle as	
sessionID	to	be	used	by	node5

- Node	5	gets	the	sessionID and	extracts	the	
required	key.

- The	rest	is	standard	RSVP

Node2

Node3

Node4

No	SessionID	(=0)
Inject	SessionID in	ERO

sessionID found
get	sessionID

4 metrics:
- Key	length
- Layer	of	encryption
- Refresh	type	/	value
- Enc_Alg



Experimental	validation

Emulated
Quantum

Link

ETSI	to	IDQ
Proxies

GMPLS
Control
Plane



Experimental	validation	RSVP	(signalling)

Node	4	QE ERO	subobject.
(before	node	2)
Type:	0x67
Value:	”00..00”	(64	bytes)
KeyLenght:	32
Enc_layer:	2
RefType:	0xfd
RefValue:	60
Alg:	10	(TBD)

Node	4	QE ERO	subobject.
(before	node	2)
Type:	0x67
Value:	“4a0e…052f”	(64	bytes)
KeyLenght:	32
Enc_layer:	2
RefType:	0xfd
RefValue:	60
Alg:	10	(TBD)



Securing	SDN	and	NFV	control	plane	operations

• Current	network	architectures	and	devices	communicate	with	each	other	utilizing	
different	protocols	and	standards.
• Some	of	these	protocols	are	open	and	therefore	vulnerable	to	attacks	while	
others	rely	on	security	protocols,	which	internally	use	public	key	encryption	(at	
least	for	key	exchange).
• Here	we	propose	the	integration	of	SSH-based	interfaces	for	control	plane	
communication,	replacing	or	reinforcing	the	public-key-based	key	exchange	
(Diffie-Hellman)	for	QKD.



Abstract	view

INFRASTRUCTURE
LAYER

Cloud	&	Infrast.
Platforms

Cloud	&	Infrast.
Platforms

SDN	/	NMS
System

Network	
Orchestration

Cloud/NFV	
Management

RESTful/SSH RESTful/SSH
OpenFlow
NETCONF

RESTful/SSH
RESTful/SSH

RESTful/SSH



Logical	view

ISP

TD3

TD1

TD4

TD2

Local:
SDN	controller
Cloud	platform
NFV	platform

Net.	Orch.
Local:
Cloud	platform

Cloud	orch.
NFV	Orchestrator
Local:
Cloud	platform

Local:
SDN	controller
Cloud	platform
NFV	platform

QKDBoxes

QKDBoxes

QKDBoxes

QKDBoxes



Proposed	implementation

DockerNet DockerNet

Orchestration Net	Ctrl

Packet	/	Optical

SSH



Demo	workflow
Orchest. DN1 DN2 ONOS

Create	Topology

Create	Topology

Get	Topology

Get	Topology
Topology

Topology

ACK

ACK

Push	Intents
ACK

Decompose	Request
Request

Optics	Ctrl



Key	exchange	operation	(SSH)
ALICE BOB

…
…

inKey,inKeyID=Get_inboud_key(128,noID)

_MSG_KEXDH_INIT(inKeyID,inIVID)

inIV,inIVID=Get_inboud_IV(128,noID)

outKey,outKeyID=Get_outboud_key(128,inKeyID)
outIV,outIVID=Get_outboud_IV(128,inIVID)

inKey,inKeyID=Get_inboud_key(128,noID)
inIV,inIVID=Get_inboud_IV(128,noID)

outKey,outKeyID=Get_outboud_key(128,inKeyID)
outIV,outIVID=Get_outboud_IV(128,inIVID)

_MSG_KEXDH_REPLY(inKeyID,inIVID)

IDQ3P

IDQ3P

IDQ3P

af06...71b4
Xor				0165...de32

ae63...af86

Combined	keys
DH	key
QKD	key
Final	key

Example	using	extended	DH_group1



Captures,	Workflow	(local	example)
SSH	Session	messages

QKey extraction

Preferred	KEX

Few	OF	messages



Client	KeyID

Server	KeyID

Captures,	Workflow	(local	example)



Future	developments

• We	are	defining	new	use	cases	for	the	integration	of	QKD	
technologies	in	future	network	paradigms	and	services.
• We	are	currently	collaborating	with	different	standardization	groups	
from	IEEE	and	ETSI	in	order	to	integrate	QKD	systems	in	current	
control	plane	frameworks.
• We	would	like	to	create	a	physically	distributed	testbed	to	
demonstrate	our	solutions	in	a	realistic	scenario.	We	are	currently	
discussing	these	possibilities	with	network	operators	and	vendors.



THANK	YOU!!!

Alejandro	Aguado	and	Vicente	Martin	


